2024-08-13T09:25:10.png

原理

卡尔曼滤波是一种用于线性动态系统的递归估计方法,它可以估计系统的状态,即使系统的过程和测量噪声是随机的和不确定的。

步骤

预测阶段: 根据前一时刻的状态估计和控制输入预测当前时刻的状态。
更新阶段: 使用当前的测量数据更新预测的状态,以得到更准确的估计。
状态转移方程: 描述系统的动态过程。
观测方程: 描述测量值与状态的关系。

应用

卡尔曼滤波被广泛应用于导航、跟踪和信号处理等领域,尤其适合处理噪声较大的动态系统。

代码实现

public class KalmanFilter {

private double q; // process noise covariance
private double r; // measurement noise covariance
private double x; // estimated value
private double p; // estimation error covariance
private double k; // kalman gain

public KalmanFilter(double processNoise, double measurementNoise, double estimatedError, double initialValue) {
    this.q = processNoise;
    this.r = measurementNoise;
    this.p = estimatedError;
    this.x = initialValue;
}

public void update(double measurement) {
    // Prediction update
    p = p + q;

    // Measurement update
    k = p / (p + r);
    x = x + k * (measurement - x);
    p = (1 - k) * p;
}

public double getValue() {
    return x;
}

public static void main(String[] args) {
    KalmanFilter kf = new KalmanFilter(1, 1, 1, 0);
    double[] measurements = {1, 2, 3, 4, 5};

    for (double measurement : measurements) {
        kf.update(measurement);
        System.out.println("Estimated value: " + kf.getValue());
    }
}

}

class KalmanFilter:

def __init__(self, process_noise, measurement_noise, estimated_error, initial_value):
    self.q = process_noise
    self.r = measurement_noise
    self.p = estimated_error
    self.x = initial_value

def update(self, measurement):
    # Prediction update
    self.p = self.p + self.q

    # Measurement update
    k = self.p / (self.p + self.r)
    self.x = self.x + k * (measurement - self.x)
    self.p = (1 - k) * self.p

def get_value(self):
    return self.x

kf = KalmanFilter(1, 1, 1, 0)
measurements = [1, 2, 3, 4, 5]

for measurement in measurements:

kf.update(measurement)
print("Estimated value:", kf.get_value())

class KalmanFilter {

constructor(processNoise, measurementNoise, estimatedError, initialValue) {
    this.q = processNoise;
    this.r = measurementNoise;
    this.p = estimatedError;
    this.x = initialValue;
}

update(measurement) {
    // Prediction update
    this.p = this.p + this.q;

    // Measurement update
    const k = this.p / (this.p + this.r);
    this.x = this.x + k * (measurement - this.x);
    this.p = (1 - k) * this.p;
}

getValue() {
    return this.x;
}

}

const kf = new KalmanFilter(1, 1, 1, 0);
const measurements = [1, 2, 3, 4, 5];

for (const measurement of measurements) {

kf.update(measurement);
console.log("Estimated value:", kf.getValue());

}

using System;

public class KalmanFilter {

private double q; // process noise covariance
private double r; // measurement noise covariance
private double x; // estimated value
private double p; // estimation error covariance
private double k; // kalman gain

public KalmanFilter(double processNoise, double measurementNoise, double estimatedError, double initialValue) {
    this.q = processNoise;
    this.r = measurementNoise;
    this.p = estimatedError;
    this.x = initialValue;
}

public void Update(double measurement) {
    // Prediction update
    p = p + q;

    // Measurement update
    k = p / (p + r);
    x = x + k * (measurement - x);
    p = (1 - k) * p;
}

public double GetValue() {
    return x;
}

public static void Main(string[] args) {
    KalmanFilter kf = new KalmanFilter(1, 1, 1, 0);
    double[] measurements = { 1, 2, 3, 4, 5 };

    foreach (double measurement in measurements) {
        kf.Update(measurement);
        Console.WriteLine("Estimated value: " + kf.GetValue());
    }
}

}

说明

过程噪声 (q):系统的内在不确定性。
测量噪声 (r):传感器的不确定性。
估计误差 (p):对当前状态的不确定性估计。
初始值 (x):卡尔曼滤波器开始估计的初始状态。
这些示例假设了一维线性系统。实际应用中可能需要根据具体系统的动态特性进行调整。对于多维系统,状态和协方差矩阵的维度和计算将更加复杂。

最后修改:2024 年 08 月 14 日
如果觉得我的文章对你有用,请随意赞赏